Just out | Intra-specific variation and allometry of the skull of Late Cretaceous side-necked turtle Bauruemys elegans (Pleurodira, Podocnemididae) and how to deal with morphometric data in fossil vertebrates @ PeerJ


Just out @ PeerJ


Intra-specific variation and allometry of the skull of Late Cretaceous side-necked turtle Bauruemys elegans (Pleurodira, Podocnemididae) and how to deal with morphometric data in fossil vertebrates


Author(s)

Thiago F. Mariani, Pedro S.R. Romano


Abstract:

Background

Previous quantitative studies on Bauruemys elegans (Suárez, 1969) shell variation, as well as the taphonomic interpretation of its type locality, have suggested that all specimens collected in this locality may have belonged to the same population. We rely on this hypothesis in a morphometric study of the skull. Also, we tentatively assessed the eating preference habits differentiation that might be explained as due to ontogenetic changes.

Methods

We carried out an ANOVA testing 29 linear measurements from 21 skulls of B. elegans taken by using a caliper and through images, using the ImageJ software. First, a Principal Components Analysis (PCA) was performed with 27 measurements (excluding total length and width characters; =raw data) in order to visualize the scatter plots based on the form variance only. Then, a second PCA was carried out using ratios of length and width of each original measurement to assess shape variation among individuals. Finally, original measurements were log-transformed to describe allometries over ontogeny.

Results

No statistical differences were found between caliper and ImageJ measurements. The first three PCs of the PCA with raw data comprised 70.2% of the variance. PC1 was related to size variation and all others related to shape variation. Two specimens plotted outside the 95% ellipse in PC1∼PC2 axes. The first three PCs of the PCA with ratios comprised 64% of the variance. When considering PC1∼PC2, all specimens plotted inside the 95% ellipse. In allometric analysis, five measurements were positively allometric, 19 were negatively allometric and three represented enantiometric allometry. Many bones of the posterior and the lateral emarginations lengthen due to increasing size, while jugal and the quadratojugal decrease in width.

Discussion

ImageJ is useful in replacing caliper since there was no statistical differences. Yet iterative imputation is more appropriate to deal with missing data in PCA. Some specimens show small differences in form and shape. Form differences were interpreted as occuring due to ontogeny, whereas shape differences are related to feeding changes during growth. Moreover, all outlier specimens are crushed and/or distorted, thus the form/shape differences may be partially due to taphonomy. The allometric lengthening of the parietal, quadrate, squamosal, maxilla, associated with the narrowing of jugal and quadratojugal may be related to changes in feeding habit between different stages of development. This change in shape might represent a progressive skull stretching and enlargement of posterior and lateral emargination during ontogeny, and consequently, the increment of the feeding-apparatus musculature. Smaller individuals may have fed on softer diet, whereas larger ones probably have had a harder diet, as seen in some living species of Podocnemis. We conclude that the skull variation might be related to differences in feeding habits over ontogeny in B. elegans.


READ IT HERE:

https://peerj.com/articles/2890/

Lurdes Fonseca

Assistant Professor and Researcher at University of Lisbon
Sociologist (PhD), Paleontologist (Researcher in Micropaleontology), Majors in Sociology and Biology, Minor in Geology. Main interests in Paleontology: Microfossils, Molecular fossils, Paleobiology and Paleoecology. (read more about me)