On the News | 99-million-year-old termite-loving thieves caught in Burmese amber @ EurekAlert!


On the News @ EurekAlert!


Title: 

99-million-year-old termite-loving thieves caught in Burmese amber


Excerpt:

The oldest termitophile from 99-million-year-old Burmese amber, Cretotrichopsenius burmiticus.
Image Credit: Cai et al., 2017

“Eusocial insects, such as ants, social wasps and bees, and termites, include some of the most ecologically ubiquitous of terrestrial animals. The nests of these insects are well protected and provide a safe, communal space for the storing of resources and production of brood, so the nests are often cohabited by various highly specialized symbionts that take advantage of the abundant resources and protection inside the nests.

Recently, a research team led by Dr. CAI Chenyang and Prof. HUANG Diying from Nanjing Institute of Geology and Palaeontology (NIGPAS) of the Chinese Academy of Sciences reported the oldest, horseshoe-crab-shaped, and obligate termite-loving rove beetles from mid-Cretaceous Burmese amber. These fossils represent the oldest known termitophiles, which are able to hack into termite nest and to exploit their controlled physical conditions and “steal” plentiful resources (e.g., fungi) inside it. The discovery reveals that ancient termite societies were quickly invaded by beetles about 99 million year ago.

Termitophiles, symbionts that live in termite nests, include a wide range of morphologically and behaviorally specialized organisms. Understanding of the early evolution of termitophily is challenging due to a scarcity of fossil termitophiles, with all known reliable records occurring from the Miocene Dominican and Mexican ambers (approximately 19 million years ago). Mesozoic termitophiles are of great significance for understanding the origin of eusocial societies of termites and the early evolution of specialized termitophily.

To integrate into the hosts’ societies, termitophilous beetles have repeatedly evolved physogastry (swollen abdomens) and limuloid (horseshoe-crab-shaped) body shapes, representing the two principal forms. Both morphological adaptations have arisen convergently many times in beetles (Coleoptera) as well as in flies (Diptera).” (…) READ MORE

Lurdes Fonseca

Assistant Professor and Researcher at University of Lisbon
Sociologist (PhD), Paleontologist (Researcher in Micropaleontology), Majors in Sociology and Biology, Minor in Geology. Main interests in Paleontology: Microfossils, Molecular fossils, Paleobiology and Paleoecology. (read more about me)